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TECHNICAL NOTE NO. 1681

CRITTICAL, SHEAR STRESS OF AN INFINITELY
LONG FLATE IN THE PLASTTIC REGION

By Elbridge Z. Stowell
SUMMARY

The plasticity reduction factor in the formula for the buckling
stress of a long plate under uniform shear has been computed from the
properties of the stress—strain curve for the material. Some limited
tests on the shear buckling of 24S-0 aluminum—alloy plates in the
plastic reglon tend to confirm the value of the reduction factor
predicted by the theory. Restraint against rotation along the edges
of the plate has little or no effect upon the value of the reduction
factor according to theoretical calculetion.

INTRODUCTION

The problem of computing the critical shear stress for an infinitely
long plate with edges elastically restrained against rotation was solved
for the elastic stress range in reference 1. The theory of reference 1
is no longer applicable, however, in cases where buckling occurs beyond
the elastic range; in such cases, the theory must be modified to allow for
curvature of the stress—strain curve. The problem consists in the compu—
tation of the plasticity reduction factor 17 1In terms of the properties
of the stress—strain curve for the material.

The general equations for the buckling of a thin plate under combined
compression and shear in the plane of the plate were derived in reference 2.
Upon the assumption that the plate remains in the plastic state during
buckling, the differential equation of equilibrium of the plate was derived,
together with the corresponding expressions for the variations in energy at
buckling. These general expressions were then applied to the case of a
plate in which one of the compressive forces and the shear force were zero,
that is, to a plate under simple compression.

The ssme general expressions may also be applied to the case of a
plate under pure shear in the plane of the plate by setting both com—
pressive forces equal to zero. This applicatlon has been mads in the
present paper.
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RESULTS

Theoretical results.— The plate is assumed to be infinitely long
with side edges elastlcally restrained against rotation. The applied
shear stress is assumed to be uniformly distributed and, as in
reference 2, no unloading of the plate is assumed to occur during
buckling. By virtue of these assumptions, the plate remains in the
plastic state during buckling and the relations developed in reference 2

apply.

The procedure followed is to employ the same deflection surface in
the energy expressions for the plastic case that was used in reference 1
for the elastic case. From the resulting expressions the approximate
value of the critical shear stress in the plastic reglon is computed.
The expression for the critical shear stress in such a case is

n ﬂakgEt?
12 — p?)p?

in which

T critical shear stress

kg coefficient depending upon conditions of edge restraint
and shape of plate

t thickness of plate

b width of plate

E Young's modulus

K Poisson's ratio

U\ coefficient which allows for reduction In ghear gtress in

plastic range

The value of the wave length required to mske the critical shear stress
a minimm is found and is substituted in the expression for the critical
shear stress, which is then known in terms of the angle of the waves, the
magnitude of the elastic restraint, and the plasticity coefficients.
Division of thls expression for the critical shear stress by the corre—
sponding spproximste expression in the elastic range gives the value of
the coeffiélent 17 to a clogser approximation than either of the indi—
viduel critical stresses.

The coefficient 1 1s given formaslly in the appendix as a function
of the angle of the waves ¢, the magnitude of the elastic restralnt e,



and the plasticity coefficlents Ig/E and C3. The resulting equation 1s

By sin 2o 2 \[f1(e) \]1 - sin22¢ + 2[1 + 2 sing — (1 - C3) ooa%]fg(e)
" E ein of 2\[£1(c) + 2(1 + 2 sin?fy)£ale)
where
B secant modulus of material

£1(¢), £o(¢) functions of elestic restraint e

Csy plasticlity coefficlent

%o wave angle in elastic range
1y (3 — C3)ta(e)

@ = = cos
2 2\/

7~ ~ Na £y
+ (3 + C3)fale)

\f E_:‘_.S_Binaggf

The angle of the waves ¢ 1s that angle which will meke the critlcel shear stress a
minimm, As soon as the magnitude of the elastlc restreint 1s mselected, the angle of
the waves, and therefore n, may be computed for any stress.

Camputations of 17 were made for a plate of 24S-T aluminum alloy in the oases where
the edges of the plate were simply supported and clamped. The procsdures used are glven

in detail in the eppendix. The calculations with both sdge condltions resulted in

E
gubstantially the same curve, shown in figure 1. Curves of 71 = if. and = i? as

obtained for compresslon in reference 2 are included for camparison.

(1)

TQ9T 'ON NI VOVM
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Experimental check.— The critical shear stress of eight long
plates of 24S-0 aluminum alloy has been measured in the plastic
region by Gerard (reference 3). An attempt wes made to secure a
clamped condition along the edges and buckling was determined by the
difference in strain on opposite sides of the sheet as measgured with
electrical gages. Gerard's data are represented by the test points
in figure 2. The solid—line curve of figure 2 gives the theoretical
values of 1 as computed by equation (1) from the axial stress—
strain curve supplied by Gerard for 24S-0 aluminum alloy in reference 3.
This theoretical curve confirms the trend of the experimental points in
a satisfactory menner, although it lies in the upper part of the scatter
band.

In reference 3 Gerard suggested that the shear secant modulus be
used as the effective modulus for a long plate under shear. Gerard's
assumption is, from equation (2) of reference 3, .

G
_Gg
=7

where the G's refer to the slope of a shear stress—strain curve
derived from the axlal stress—strain curve. The dash—line curve in
figure 2, which was computed from figure 8 of reference 3,-shows the
value of 7 that results from this suggestion. The agreement with
the solid—line curve, which represents the values of 1 computed from
the theory of the present paper, is seen to be fair.

The necessary conditions for use of the shear secant modulus,
however, should be exsmined further. In the appendix, equation (1)
is shown to reduce to the form :

1 = Constent -E-:Eﬁ

if C3 1is constant. For Gerard's curve for 24S-0 alumimm alloy the
requirement for a constant C3 is closely fulfilled. When the value

of 1 1is computed from equation (1), 1t is found that

This relation is plotted as the solid line in figure 2. Results of
the calculation are also given In a more familiar form in figure 3.

Caution should be employed in generalizing the use of the ghear
secant modulus to materials, such as 24S-T aluminum alloy, for which
C3 is not a constant in the plastic range. The upper curve in
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figure 1 represents Eg/E for 24S—T aluminum alloy and therefore
describes the axlal stress—strain curve for that materisel. The center
curve, which represents 1, cannot be obtalned fram the upper curve by
multiplying the ordinates by a constant factor throughout the plastic
range; therefore 1 for this materlel 1s not the shear secant modulus.

CONCLUSIONS

The theory of plastic buckling previously reported has been applied
to the determination of the plasticity reduction factor in the formulsa
for the buckling stress of a long plate under uniform ghear from the
properties of the stress—strain curve for the material. Some limited
data on the shear buckling of 24S—0 sluminum—alloy plates in the plastic
reglon tend to confirm the value of the reduction factor predicted by
the theory. The theory indicates that restralnt agalngt rotation along
the edges of the plate has little or no effect on the value of the
reduction factor.

Langley Aeronauticel Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va., May 2k, 1948
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APPENDIX
ANATYSTS

General theory.— Refersnce 2 shows that for a plate under shear
alone the work T done on the plate, expressed in a Cartesian (x', y')
system, 1s

2 (293w ow
T =Tt |y _[_La?_g?dx' ay? (2)
2 2
where
T applied shear stress
W deflection of plate at (x!, y')
A half-wave length

The expression for the strain energy in the plate Vy, from
reference 2, is

ok ook 2 > 2
V1=]2)'L f_g f—% <§3§> +C3 (ﬁ%{'} +:]2:2 :jja +<:§:’72> ax! gy!
(3)
where
c3 =1+ ﬂ_t
D! = 13 %ﬁ
Ey tangent modulus of material

If, in addition, the plate has equal elastic restraints ¢ against
rotation along the side edges, the strain energy in these restraints Vo
is, from reference 2,
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Iet a more sultable oblique coordinate system be defined by

x=x'+y' tan ¢

as in reference 1. (See fig. L.)

Then T, Vi, and V, in the new system are

by

2 [2
_ dw dw . [ow V¥
T = Tt fbl /& [&S}'"L(E) sin¢]dxdy
- 2

| "ad

——

Vi =

20];;¢ \/_‘_%]; [% [coi2¢—2(1—03) sin2¢]< )

+ 0022¢ (gy_e% %, [1 + 4 ten®f — (1 - 03)](%2

+[l+2tan2¢ (1-03)]:22@2_

L tanﬂ azw [Bzw 82w (l — 03) & 0052¢} dx dy
dy2 \ ox?

cos @ Oxdy | 3x2

(1)

(5)

(6)

(N
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A
_ _D'e 2 dw . Ow 2 dw . dw 2 .
T2 s 2b cos2g Y [53' oz sin ¢:|y=% +B; * 55 sin ¢]y=_1)2l dx (8)
2

where

b

b1 = 558 g

A comparison with the corresponding formulas in appendix B of reference 1
will show that the two groups are identical if Poisson's ratio is taken
as 0.5 and if 03 = 1; that 1s, if only the elastic range is considered.

As In reference 1, the assumed deflection -surface is

W = Wy [lféﬁ. 'b]2_2_ %) + (l + %) cos %:I cos —’%

in which the half—wave length A willl be adJusted to make the critical
stress a minimum. Substituting this deflection surface into
expressions (6), (7), and (8) and performing the indicated integrations
gives

2byt sin

T o >N

T = o R (%)z[ggf@ - 20 =05 st : (w>2

A

1+ 2 8in?f — (L — C3) cos®f -

+2 202G (9)

2 _ xDler

VE = W,
2b13 cos3¢

o}
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where

Setting up the equality T =Vy + V,, which holds at buckling, and
golving for the critical shear stress T gives

T = 1 —12 S . (l-—C)sin2¢ +——-—-g;];—i———
sin 2¢ k) [0052525 2 3 ] (bl ° ¢)2

2¢
21+2sin2¢—(1—-03) c052¢N+ 72 72D!?
+ puid
0052¢ L (bl cos ¢>2L blat
A
w2
or, replacing by cos § by b, and writing Lo £, (¢)

and %: £o(e) ylelds

a8

'r-: (1'%)2 [col — 2(1 - C3) s1n2¢] + %Z—) cos®f

A

+ 2 I:l + 2 sin?g — (1 - c3> cos%ﬂ fole) %5 (10)
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In the elastic range @ = 1) this expression reduces to the carresponding
formula in reference 1.

The half-wave length A and the wave angle ¢ will adjust themselves
t0 make T & minimm; that is,

_ar |
@)

which gives
fl(e) c052¢
¢ - R
V2 -5 sl
from which
Todn 2¢ ‘|:2\/fl(e \/l - sin22¢
+ 2 [1 + 2 sin®f — (1 - 03) cos2¢] £o(e) % (12)
The angle ¢ i1s found from the relation
?I%%Q )
which gives
cos 2¢ = B ~ %) *2(e) (13)

2\/ £7(e)




The value of ¢ 1s thus fixed as soon as the restreint is chosen end the valus of Ey/Eg is
atio (19\ for computatlon of the

ML LA

pasmed. Thisg value of d 1a the ons to he umed In equ

N T -y LA Sl

minimm critical shear stress Todn®

TROT "OH NI VOVN

In the elaatlc range, the corresponding minimm critical ghear atrese (To)mj.n is obtalned
- -Eﬁ iis .
9

T\

PRI S & .
equation {(12):

K N = JE—- ™t

(To)min = —3—11—1155 I:E \Ifl(e) + 2 (l + 2 Bin2¢o> fE(G):l ;2—2-% (1h)

where the gubscript O signifies that the quantity is in the elastic range. Thus, fram
equation (13),

fg(e)

VEr(e) + 2fp(e)

The value of 1 1is the ratio of the oriticel shear stress Tpy, to the oritical shsar
gtress (To)min that would be obtailned if the materisl were wholly elagtic; thus

cos ¢y = (15)

B, sin o, 2\/f1(e) \/ - sin2‘2¢ + EEL +2 sin2¢ (l —_ 03) cosesﬁ] fole)
sin 2¢

et AR
2\ () + 2(1 + 2 sin"fp)Tp(e)

The value of 7 a8 a funotlon of stress’'will now be consildered for the two extrems
cages of simply supported and oclamped edges:

TT
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12
(a) TFor the case of simply supported edges,
£1(€) = £o(¢) =1
=1
cos 2¢O 3
sin 2@, = 0.943
s1n°f = 0.333
cos 2¢ = S 3-°3
+ 3 + C3
Vl —-1;2593 sin®2g
and ]
1-C o
n=§§o.91,_3 2\/1———2—3sin2¢+2[1+251n2¢—(1—03) 0052¢]
E sin 2¢ 5.33 :

This value of 1 18 plotted against stress in figure 1 for 24S-T aluminum
alloy.

(b) For the case of clamped edges,

€ =™
fl(t:') = 5-111'
f2(<-:) =1.24

cos 2¢O = 0.26

sin®@y = 0.37
1.24(3 — C3)

cos 2§

5.53 + 1.24(3 + Cg)
\[1 ~ 1273 sy
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and

1-C
By 0,966 4,53 \1 —-———g—i sin22¢ + 2.148 [l + 2 sin2¢ - (1 - C3) 0082¢]
- ¥ 8.8k

This value of 1 18 nearly identical numerically with the value from
case (a) and 1s represented by the same curve in figure 1.

Conditions under which Gerard's shear secant modulus applies.—
Equation (1) gives the general formula for 1, which involves,
besides Eg/E, the following quantities:

4 (€) Functions only of restraint
f2(€) g coefficlent ¢
%o Angle of waves on assumption of

elagticity (by equation (15))
depends only on €

¢ Angle of waves in plastic range
(by equation (13)) depends on ¢
and plasticity coefficlent C3

C3 Plasticity coefficilent

The magnitude of the restraint coefficlent € 1is considered to be
part of the data furnished with the problem. Thus, f1(€¢) and fo(e)

are known constants; the angle ¢O is therefore also a known constant.

If, in addition to these quantlities entering into equation (1), the
plasticity coefficlent C3 should also be a constant, equation (1)

would reduce to the form

=

8

1 = Constant T

Gerard's assumption is, from equation (2) of reference 3,

G
1=
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where the G!'s refer to the slope of a shear stress—strain curve derived
from the sxial stress—strain curve.

=

t

The plasticity coefficient C3 is defined as -Jé'-+ 5 and therefore
8

el o

the condition for constancy of C3 ig that

Ey = XBg
or

dojy _ x91

dei - ei

where X 1s some constant. The relation o4 = Keix, where K 18 a

constant, satisfies this requirement. For Gerard's curve for 24S-0 aluminum
alloy, X is approximately 0.28 over the plastic range, and the requirement
for a constant C3 is closely fulfilled. When the value of 1 1is computed

fram equation (1) it is found that n = O. 89 —2. This relation is plotted
as the solid line in figures 2 and 3.
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Figure 2.— Values of 7) for a long plate of

24S-0 aluminum alloy under uniform
shear stress.
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